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SO2 and IED

 Current position under the LCPD:
 Monthly ELVs at 400 mg/Nm3 or 94% removal efficiency (92% for FGD 

contracted before 2001)

 Position under IED:
 ELV of 200 mg/Nm3 (existing plant) or 150 mg/Nm3 (new plant) monthly
 Provision for equivalency achieving 96% removal on indigenous coal with 

detailed justification
 BAT conclusions will supersede other requirements when finalised (likely  

to be finalised 2014/15 and implemented in 2019 at earliest). First BREF 
revision draft still imminent (expected May 2013)
 Within the TNP period ELV that applies on 31 Dec 2015 must be 

maintained throughout TNP.
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FGD on power plant in the UK

 First power plant FGD in the world were installed at Battersea, Bankside & 
Fulham Power Stations from 1933 onwards
 Battersea & Bankside were alkali dosed sea water plant (once through)
 Fulham was a recirculated lime slurry

 FGD technology was further developed & applied in Germany & Japan in 
the 1970’s

 The next generation of FGD plant in the UK were constructed in the mid to 
late 90’s (Drax, Ratcliffe, Uskmouth) in response to the 1988 LCPD

 The latest generation of FGD built in 2000’s to meet 2001 LCPD (West 
Burton, Eggborough, Cottam, Aberthaw, Kilroot, Fiddlers Ferry, Ferrybridge, 
Longannet & Rugeley).
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Learning curves

 Development is a good case study for other technologies at utility scale
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Technologies applied in the UK power sector

 Dry/Semi-dry NID process
 Uskmouth

 Sea Water Process
 Aberthaw
 Kilroot
 Longannet

 Limestone Forced Oxidation
 Cottam
 Drax
 Eggborough
 Ferrybridge
 Fiddlers
 Rugeley
 Ratcliffe
 West Burton
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NID Dry/Semi-dry process

 Two step process:
 CaO + H2O → Ca(OH)2

 SO2 + Ca(OH)2 → CaSO3.1/2H2O + 1/2H2O

 Water addition provides some gas 
cooling (max. T of process ~200 oC), 
content in end product ~5%

 Process efficiency sensitive to other 
acid gas species (e.g. HF, HCl, etc.)

 Generally lower CAPEX but higher 
OPEX than wet processes
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Sea Water Process

 Applicable for sea water/estuarine cooled power plant only
 A portion (typically 20%) of CW flow routed to absorber and contacted with 

flue gas over packed column
 Relies on natural alkalinity of seawater (carbonate & biocarbonate)
 Seawater pH typically 7.6 to 8.4 (site specific, with potential for seasonal 

variation)
 CW flow recombined and aerated to increase pH and reduce COD for

discharge
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Sea Water Process Chemistry
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Sea Water Process Chemistry (2)

 Oxidation may be enhanced by addition of catalysts (e.g. Ferric 
Chloride/Sulphate), experience seems to be mixed on their efficacy

 Local sea water alkalinity is critical – should be considered in the early 
stages of technology selection

 Air sparging may cause issues with foaming depending on sea water quality

 Harsh, highly corrosive environment (low pH, high chloride) in absorber –
materials selection is important
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Limestone Forced Oxidation (LSFO)
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LSFO Chemistry

 Absorption & acidification

 Dissolution

 Acid-base reaction

 Oxidation

 Crystallisation
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Oxidation

 Oxidation is critical to LSFO FGD performance
 Proceeds via free radical mechanism
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Non-ideality in LSFO chemistry

 Absorption – series of equilibria linked to oxidation of sulphite to sulphate. 
Inhibited oxidation can affect SO2 removal

 H2SO3 dissociation – reduced by presence of stronger acids (e.g. HCl, 
H2SO4)

 Limestone dissolution – High levels of CaCl2 can inhibit, also Al & F can 
cause blinding

 Limestone overdosing - high residual limestone levels in slurry possibly 
leading to demister fouling and gypsum quality issues

 Gypsum crystallisation – low solids concentrations can inhibit nucleation 
within the slurry – this can lead to poor crystal growth (difficult dewatering) & 
scaling
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Oxidation inhibition

 Radical ‘killers’ can enter the FGD from upstream

 Iodide can act as a strong inhibitor and is reduced to iodine.

 SN compounds (formed by reaction of NOx with sulphite) can also act 
as inhibitors (e.g. HADS = HON(SO3H)2)

 Indicators – Reduced performance, low redox potential (<300 meV), 
presence of significant levels of sulphite or iodide, halogen odour, 
presence of SN compounds15



Conclusions

 FGD is a technology with a well-established history in the UK

 A range of FGD techniques are currently applied by the UK power sector 
with varying degrees of complexity of chemistry

 Understanding process chemistry is key to optimising performance and 
diagnosing operational issues

 IED compliance is likely require better control of chemistry as well as 
potential engineering modifications
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