FGD Chemistry: A Review

Chris Satterley

Contents

- 1. Brief review of SO₂ and IED
- 2. FGD on power plant technology development
- 3. Technologies applied in the UK power sector
- 4. Dry/semi-dry process (NID)
- 5. Sea Water Process
- 6. Limestone Forced Oxidation
- 7. Conclusions

SO₂ and IED

- Current position under the LCPD:
 - Monthly ELVs at 400 mg/Nm³ or 94% removal efficiency (92% for FGD contracted before 2001)
- Position under IED:
 - ELV of 200 mg/Nm³ (existing plant) or 150 mg/Nm³ (new plant) monthly
 - Provision for equivalency achieving 96% removal on indigenous coal with detailed justification
 - BAT conclusions will supersede other requirements when finalised (likely to be finalised 2014/15 and implemented in 2019 at earliest). First BREF revision draft still imminent (expected May 2013)
 - Within the TNP period ELV that applies on 31 Dec 2015 must be maintained throughout TNP.

FGD on power plant in the UK

- First power plant FGD in the world were installed at Battersea, Bankside & Fulham Power Stations from 1933 onwards
 - Battersea & Bankside were alkali dosed sea water plant (once through)
 - Fulham was a recirculated lime slurry
- FGD technology was further developed & applied in Germany & Japan in the 1970's
- The next generation of FGD plant in the UK were constructed in the mid to late 90's (Drax, Ratcliffe, Uskmouth) in response to the 1988 LCPD
- The latest generation of FGD built in 2000's to meet 2001 LCPD (West Burton, Eggborough, Cottam, Aberthaw, Kilroot, Fiddlers Ferry, Ferrybridge, Longannet & Rugeley).

Learning curves

• Development is a good case study for other technologies at utility scale

Rubin, et al. GHGT-8 proceedings, 2006

Technologies applied in the UK power sector

- Dry/Semi-dry NID process
 - Uskmouth
- Sea Water Process
 - Aberthaw
 - Kilroot
 - Longannet
- Limestone Forced Oxidation
 - Cottam
 - Drax
 - Eggborough
 - Ferrybridge
 - Fiddlers
 - Rugeley
 - Ratcliffe
 - West Burton

NID Dry/Semi-dry process

- Two step process:
 - CaO + H₂O → Ca(OH)₂
 - $SO_2 + Ca(OH)_2 \rightarrow CaSO_3.1/2H_2O + 1/2H_2O$
- Water addition provides some gas cooling (max. T of process ~200 °C), content in end product ~5%
- Process efficiency sensitive to other acid gas species (e.g. HF, HCl, etc.)
- Generally lower CAPEX but higher OPEX than wet processes

Sea Water Process

- Applicable for sea water/estuarine cooled power plant only
- A portion (typically 20%) of CW flow routed to absorber and contacted with flue gas over packed column
- Relies on natural alkalinity of seawater (carbonate & biocarbonate)
- Seawater pH typically 7.6 to 8.4 (site specific, with potential for seasonal variation)
- CW flow recombined and aerated to increase pH and reduce COD for discharge

Sea Water Process Chemistry

$$SO_2 + H_2O \rightarrow HSO_3^- + H^+$$

 $HSO_3^- \rightarrow SO_3^{2-} + H^+$

} Absorption & dissociation

$$HSO_3^- + \frac{1}{2}O_2 \to SO_4^{2-} + H^+$$

 $SO_3^{2-} + \frac{1}{2}O_2 \to SO_4^{2-}$

} Oxidation

$$CO_3^{2-} + H^+ \rightarrow HCO_3^-$$

 $HCO_3^- + H^+ \rightarrow CO_2 + H_2O$

} Acid-Base Reaction

Sea Water Process Chemistry (2)

- Oxidation may be enhanced by addition of catalysts (e.g. Ferric Chloride/Sulphate), experience seems to be mixed on their efficacy
- Local sea water alkalinity is critical should be considered in the early stages of technology selection
- Air sparging may cause issues with foaming depending on sea water quality
- Harsh, highly corrosive environment (low pH, high chloride) in absorber materials selection is important

Limestone Forced Oxidation (LSFO)

LSFO Chemistry

$$SO_{2(g)} \Leftrightarrow SO_{2(aq)}$$

$$SO_{2(aq)} + H_2O \Leftrightarrow H_2SO_{3(aq)} \Leftrightarrow 2H_{(aq)}^+ + SO_3^{2-}$$

$$CaCO_{3(s)} \Leftrightarrow Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-}$$

Dissolution

$$CO_{3(aq)}^{2-} + H_{(aq)}^{+} \Leftrightarrow HCO_{3(aq)}^{-}$$

$$HCO_{3(aq)}^- + H_{(aq)}^+ \Leftrightarrow CO_{2(aq)}$$

$$CO_{2(aq)} \rightarrow CO_{2(g)} \uparrow$$

$$SO_{3(aq)}^{2-} + \frac{1}{2}O_{2(aq)} \rightarrow SO_{4(aq)}^{2-}$$

Oxidation

$$Ca_{(aq)}^{2+} + SO_{4(aq)}^{2-} \to CaSO_{4(s)} \downarrow$$

Crystallisation

Oxidation

- Oxidation is critical to LSFO FGD performance
- Proceeds via free radical mechanism

M ³⁺ + HSO ₃ ⁻	$\rightarrow \bullet SO_3^- + M^{2+} + H^+$	Ri
•SO ₃ + O ₂	\rightarrow •SO ₅	Rii
•SO₅⁻ + HSO₃⁻	→ •SO ₃ ⁻ + HSO ₅ ⁻	Riii
HSO ₅ ⁻ + 2M ²⁺ + H ⁺	\rightarrow SO ₄ ²⁻ + 2M ³⁺ + H ₂ O	Riv
2M ³⁺ + 2HSO ₃ ⁻	$\rightarrow 2 \bullet SO_3^- + 2M^{2+} + 2H^+$	Rv
•SO ₃ - + •SO ₃ -	→ S ₂ O ₆ ²⁻ (dithionate)	Rvi
•SO ₃ + •SO ₅	\rightarrow S ₂ O ₈ ²⁻ (peroxodisulphate)	Rvii
	$\bullet SO_3^- + O_2$ $\bullet SO_5^- + HSO_3^ HSO_5^- + 2M^{2+} + H^+$ $2M^{3+} + 2HSO_3^ \bullet SO_3^- + \bullet SO_3^-$	•SO ₃ ⁻ + O ₂

Non-ideality in LSFO chemistry

- Absorption series of equilibria linked to oxidation of sulphite to sulphate.
 Inhibited oxidation can affect SO₂ removal
- H₂SO₃ dissociation reduced by presence of stronger acids (e.g. HCl, H₂SO₄)
- Limestone dissolution High levels of CaCl₂ can inhibit, also Al & F can cause blinding
- Limestone overdosing high residual limestone levels in slurry possibly leading to demister fouling and gypsum quality issues
- Gypsum crystallisation low solids concentrations can inhibit nucleation within the slurry – this can lead to poor crystal growth (difficult dewatering) & scaling

Oxidation inhibition

Radical 'killers' can enter the FGD from upstream

Inhibitors (X ⁿ)	•SO ₃ + X ⁿ	\rightarrow SO ₃ ²⁻ + X ⁿ⁺¹	Ra
	•SO ₅ + 3X ⁿ + 2H ⁺	\rightarrow SO ₄ ²⁻ + 3 X ⁿ⁺¹ + H ₂ O	Rb
	M ³⁺ + X ⁿ	$\rightarrow M^{2+} + X^{n+1}$	Rc

- lodide can act as a strong inhibitor and is reduced to iodine.
- SN compounds (formed by reaction of NOx with sulphite) can also act as inhibitors (e.g. HADS = HON(SO₃H)₂)
- Indicators Reduced performance, low redox potential (<300 meV), presence of significant levels of sulphite or iodide, halogen odour,
 presence of SN compounds

Conclusions

- FGD is a technology with a well-established history in the UK
- A range of FGD techniques are currently applied by the UK power sector with varying degrees of complexity of chemistry
- Understanding process chemistry is key to optimising performance and diagnosing operational issues
- IED compliance is likely require better control of chemistry as well as potential engineering modifications

Thanks for listening

Contact me:

Dr Chris Satterley

T +44 24 76-18 23 12

chris.satterley@eon.com

www.eon.com/technology

E.ON New Build & Technology Limited Technology Centre Ratcliffe-on-Soar, Nottingham, NG11 0EE, UK

